
Parallelizing the F4 Algorithm for Gröbner Bases

Roman Pearce

July 29, 2025

Abstract

Computing a Gröbner basis can be the first step in solving a system of polynomial equations exactly.
In this article we describe the F4 algorithm of Faugère along with its optimizations, and show how it can
be parallelized effectively for multi-core computers. Our implementation in C is available at axcas.net
and is released into the public domain.

1 Using the Software

On the website axcas.net under “Code” you will find a link to the F4 Algorithm. Download the file
axf4.zip and extract its contents into a directory. The software is distributed as source code which must be
compiled with a C compiler. Detailed instructions are given in the file readme.txt, however once you have
installed a C compiler you should be able to open a development terminal and run make on Windows, Mac,
or Linux. The compiler generates an executable program and you can run one of the examples as follows:

axf4 -p 9223372036854775783 -v [x0,x1,x2,x3,x4,x5,x6] cyclic7.txt

This line specifies a machine-sized prime, p = 263 − 25, an ordered list of variables, and a file containing
the input polynomials with one polynomial per line. The program will run F4 and generate an output file
cyclic7.txt.out containing a reduced Gröbner basis for the graded reverse lexicographical ordering.

2 Gröbner Bases

Given a set of polynomials F = {f1, f2, . . . , fs}, a Gröbner basis G = {g1, g2, . . . , gt} with respect to a
monomial ordering < has the following nice properties:

� Division by G produces unique remainders.

� The solutions and their multiplicities are the same for G as for F .

� The number of monomials not reducible by G is the same number of solutions.

� If < orders first by degree, one can compute the dimension of the set of solutions from G.

� Algorithms such as FGLM [7] or the Gröbner Walk [3] can be run on G to eliminate variables or
triangularize the system in preparation for factorization or solving.

For details and proofs we refer you to [4]. For an exposition of FGLM and the Gröbner Walk, see [5].
For additional algorithms such as primary decomposition, see [1].

By way of a small example, we will show how a Gröbner basis can be computed. Let f(x, y) = x2+y and
g(x, y) = xy − 1. We will order terms first by their total degree, with ties broken by degree in x. Starting
with the set F = {f, g}, a syzygy is found by canceling the least common multiple of x2 and xy which is x2y.

y · f(x, y) = +x2y + y2

−x · g(x, y) = −x2y + x
h(x, y) = +y2 + x

1

In general the terms of a syzygy may be reducible by f(x, y) or g(x, y) and we would want to take its
remainder. The result is either zero or a new polynomial, in this case h(x, y), with a leading term that is
not reducible by any leading term of F . We add this to our basis and consider two new syzygies involving
h and their respective remainders.

y2 · f(x, y) = +x2y2 + y3

−x2 · h(x, y) = −x2y2 − x3

Syz(f, h) = −x3 + y3

+x · f(x, y) = +x3 + xy
−y · h(x, y) = −y3 − xy

= 0

y · g(x, y) = +xy2 − y
−x · h(x, y) = −xy2 − x2

Syz(g, h) = −x2 − y
+f(x, y) = +x2 + y

= 0

The set G = {f, g, h} is then a Gröbner basis because all syzygies reduce to zero. We have in fact used
Buchberger’s algorithm [4] to compute the Gröbner basis. This algorithm reduces syzygies one at a time and
adds non-zero remainders to the basis, generatating additional syzygies as it goes.

3 F4 Algorithm

The F4 algorithm [6] improves on Buchberger’s algorithm by processing several syzygies at a time. It builds
a matrix whose columns correspond to the monomials that appear in the syzygies and divisions. We show
the matrix below for G = {x2 + y, xy − 1, y2 + x} and the syzygies between G1 and G2 (first two rows) and
G2 and G3 (second two rows). Below the syzygies come the reductors: G1 reduces x2 and G3 reduces y2.

x2y xy2 x2 y2 x y
y ·G1 1 0 0 1 0 0
x ·G2 1 0 0 0 −1 0
y ·G2 0 1 0 0 0 −1
x ·G3 0 1 1 0 0 0

G1 0 0 1 0 0 1
G3 0 0 0 1 1 0

Because the columns of the matrix are sorted in the term ordering, we expect Gaussian elimination to
mimic the process of polynomial division. In the matrix above the syzgies all reduce to zero because G is
a Gröbner basis, but in general we will find rows with new leading monomials after Gaussian elimination.
These polynomials are then added to the basis and new syzygies are generated. Below is an outline of F4
that we will refer to as we describe our implementation.

Algorithm F4

Input : an array of polynomials F = [f1,...,fs], a monomial ordering <

Output : a Groebner basis G for the ideal <f1,...,fs> with respect to <

G := []; # the partial basis

P := []; # the array of syzygy pairs

M := []; # the array of monomials in A

for each f in F do

G, P := update_pairs(f); # form initial basis and pairs

while |P| > 0 do

A, P := select_pairs(P); # select syzygies of least degree

A, M := symbolic_preprocessing(A); # build description of the matrix

A := encode_matrix(A, M); # encode the sparsity pattern of A

A := row_reduction(A); # sparse Gaussian elimination

A := new_pivot_rows(A); # select rows with new pivots

A := back_substitution(A); # inter-reduce new pivot rows

B := convert_to_polys(A, M); # convert rows to polynomials

for each b in B do

G, P := update_pairs(b); # generate new syzygy pairs

return inter_reduce(G); # produce a reduced basis

2

4 Implementation

Like the division algorithm and the Buchberger’s algorithm, the F4 algorithm over the rationals suffers from
intermediate expression swell. Because of this we have implemented F4 over the integers modulo a prime
where p < 263, with the idea that computations over the rationals should use the Chinese remainder theorem
and rational reconstruction [9, 11].

The data structure f4row is used to represent both polynomials and matrix rows. It contains a length,
a monomial multiplier, a pointer to an array of monomials, a pointer to an array of coefficients modulo p,
and a pointer to encoded column indices. The terms are always sorted in descending order.

Monomials are stored as integers referring to a position inside a contiguous block of memory. Inside the
block of memory, we store for each monomial an exponent vector and column index. Monomials are hashed
in a global hash table to ensure they are unique.

The syzygy pairs are stored in a structure f4syz containing pointers to two rows and the least common
multiple of their leading monomials. At the beginning of each iteration, we select syzygy pairs whose lcm is
smallest in the ordering, following the normal strategy of Buchberger [2] and Faugère [6].

4.1 Symbolic Preprocessing

Symbolic preprocessing loops over all matrix rows, multiplying each monomial by the monomial multiplier
for that row. When the product is a new monomial not previously seen, it searches the basis for a divisor
and if one is found it creates another new row. We use the column index stored after the exponent vector
to mark monomials as processed.

Symbolic Preprocessing

Input : an array A of F4 rows

an array B of basis elements

Output : an array M of monomials, updates A

M := [];

for i from 0 to |A|-1 do

for j from 0 to A[i].length do

m := multiply(A[i].multiplier, A[i].monomial[j]);

if Column(m) is set then continue;

set Column(m) := 1; and add m to M;

for k from 0 to |B|-1 do

if B[k].monomial[0] divides m then

create a new F4 row with

length := B[k].length;

multiplier := m/(B[k].monomial[0]);

monomial := B[k].monomial; # copies pointer

coefficient := B[k].coefficient; # copies pointer

add the new row to the end of A;

break;

return A, M;

4.2 Encoding the Matrix

The first step of encoding the matrix is to sort the array of monomials from symbolic preprocessing and
assign column indices to each monomial. Then for each row of the matrix, we store a list of column indices
for row reduction. The encoding stores the initial index as a machine word, followed by non-zero differences
as bytes provided they are 255 or less. A zero byte indicates the end of a run, and a new initial index follows
unless we are at the end of a row. An example is shown below. This encoding was first used by Faugère [6].

10000 9990 9989 5000 4950 . . . −→ 10000 10 1 0 5000 50 . . .

Encoding the matrix adds to the cost of F4 in two ways. First, all of the monomials need to be multiplied
twice, once in symbolic preprocessing and again during encoding once the column indices are known. Second,
during Gaussian elimination, the rows must be decoded to perform linear algebra.

3

4.3 Gaussian Elimination

Row reduction is implemented using two arrays, each as long as the number of columns in the matrix. One
array stores pointers to the pivot rows and the other is a buffer that is used for row reduction. Our first step
is to assign as many rows as possible to be pivots, preferring the sparsest rows. The remaining rows must
be reduced using the pivots. In general, the pivot rows are created by symbolic preprocessing and the rows
to be reduced come from the syzygies. So if there are k pairs selected, there should be N = 2k rows to be
reduced with respect to a large matrix that is upper triangular.

To reduce a row, we decode its contents into the buffer, loop down the entries, and subtract pivot rows
when they exist. When the result is not zero we obtain a new pivot. In Gröbner basis computations most
of these rows reduce to zero.

We employ a trick first used by Allan Steel in Magma and Monagan and Pearce in Maple [10] which
makes the F4 algorithm Monte Carlo. We divide the N rows to be reduced into blocks of size

√
N , and

reduce random linear combinations of each block. The probability of obtaining k zero reductions by chance
is about 1/pk, so when this is acceptable we discard the block. Our implementation uses a bound of 10−18,
which means that if p = 231 − 1 two zero reductions are required to discard a block, and if p = 261 − 1 then
only one zero reduction is required. This makes the algorithm an order of magnitude faster in practice. If

the prime and block size are too small, i.e. if 1/p
√
N > 10−18, then this technique is not used.

4.4 Pair Limits

An important modification to F4 is to limit the number of pairs, and therefore the size of the matrices in
each step. For homogeneous computations the degree of the pairs increases monotonically, and rebuilding
matrices slows down the algorithm. But for many practical problems, e.g. cyclic-n roots, there are steps
where the degree drops and this technique can save time. The idea was suggested to us by Allan Steel.

We implemented a dynamic pair limit as follows. When selecting pairs of degree d, we initially limit the
number of pairs to 2048. The pair limit doubles in the next step if the algorithm is still processing pairs
of degree d. In this way we capture both early degree drops and make good use of Monte Carlo Gaussian
elimination when there are a very large number of pairs.

4.5 Updating Pairs

Buchberger provides two criteria that substantially reduce the number of pairs that need to be considered.
First, if the lcm of the leading monomials is equal to their product, the pair reduces to zero. Second, if the
lcm of the leading monomials of B[i] and B[j] is reducible by some B[k], with {i, j, k} distinct, and both
pairs (B[i],B[k]) and (B[j],B[k]) are not present, then the pair (B[i],B[j]) can be discarded [4].

We prefer to use Gebauer and Möller’s strategy [8]. When inserting a new polynomial B[k] into the
basis, we generate pairs (B[i],B[k]) for i < k where the leading monomials are not relatively prime. From
earlier pairs (B[i],B[j]) we delete any whose lcm is reducible by B[k] but not equal to the lcm for B[i]
and B[k] or B[j] and B[k]. Among the new pairs (B[i],B[k]) we delete any whose lcm is divisible by,
but not equal to, the lcm for (B[j],B[k]) for j ̸= i. Finally, among the new pairs (B[i],B[k]) we delete
any whose lcm is exactly equal to the lcm for (B[j],B[k]) with j < i.

5 Parallelization

In parallel programming, programs start threads which can run on different CPU cores at different rates,
and co-ordinate using atomic operations that affect shared memory. Compare and swap is the primary tool
we use, because it updates values atomically and acts as a memory barrier, which stops the compiler and
CPU from reordering operations across it.

Compare and Swap (atomic)

Input : a pointer P, an old value A, a new value B.

Output : the value stored at P originally

T := *P; # T is the value pointed to by P

if (T = A) *P := B; # update memory if this value is A

return T; # return the original value

4

Suppose we start threads hoping to process the rows of a matrix in parallel. Each thread could run a
function like the one below, which acquires rows atomically and stops when all rows have been acquired.

Worker Thread

Input : a pointer B to bounds in shared memory (start and end)

st := B[0]; sz = B[1];

get: so := compare_and_swap(&B[0],st,st+1);

if (so != st) then

st := so; # update start position and try again

goto get;

else if (so >= sz) then

return ; # no more work left to do so return

... work on matrix row st ...

goto get; # get another row

5.1 Parallel Gaussian Elimination

Reducing rows is often the most expensive part of F4 and has been parallelized in Maple, Magma, and
libraries such as GBLA. Our code follows the Maple approach of adding rows to the pivot array using
compare and swap [10]. Each thread acquires a block of rows using the technique of the previous section. It
constructs random linear combinations of those rows, reducing each combination using the pivots.

When a non-zero remainder is obtained, the thread uses compare and swap to assign it to the pivots
array. On failure, the row is copied back into the buffer and reduced further before trying again.

5.2 Parallel Symbolic Preprocessing

Symbolic preprocessing is difficult to parallelize because it creates monomials and adjusts the size of the
matrix in the innermost loop. Our approach is to run the algorithm in stages, where the number of new
monomials and matrix rows are bounded in each stage by the free space in the monomial hash table. The
hash table is kept under 50% full for performance reasons.

Symbolic Preprocessing in Parallel

Shared : a hash table H of monomials

an array A of F4 rows

an array B of basis elements

an array M of monomials

Output : an array M of monomials, updates A

M := []; i := 0;

while i < |A| do

L := 0; j := i; # count terms left in A

while j < |A| and L < H.free do

L := L + A[j].length;

H := enlarge(H,L); # add space for L new monomials

A := enlarge(A,L); # add space for L new rows

bounds := [i, j];

N := number_of_cpus();

for k from 1 to N do tid[k] := start_thread(symbolic_worker, &bounds);

for k from 1 to N do join_thread(tid[k]);

i := j; # |A| is updated by the threads

return A, M;

The symbolic worker function is shown below. It acquires a new monomial by setting the column index
with compare and swap, and then it proceeds to divide by the partial basis. Where we have written to do
something atomically, it means using the technique introduced at the beginning of Section 5.

5

Symbolic Preprocessing Worker

Shared : an array A of F4 rows

an array B of basis elements

an array M of monomials

acquire the next row A[i] atomically

for j from 0 to A[i].length do

m := multiply(A[i].multiplier, A[i].monomial[j]);

if compare_and_swap(&Column(m),0,1) then continue;

add m to M atomically;

for k from 0 to |B|-1 do

if B[k].monomial[0] divides m then

create a new F4 row with

length := B[k].length;

multiplier := m / (B[k].monomial[0]);

monomial := B[k].monomial; # copies pointer

coefficient := B[k].coefficient; # copies pointer

add the new row to the end of A atomically;

break;

return;

Our final problem is that monomials must be created in parallel. We allow the hash table to be searched
in parallel, but the creation of a new monomial is done in a critical section. When the lock is acquired the
table is searched again to ensure correctness. The hash table is Davenport’s power of two quadratic hash.

Create Monomial in Parallel

Input : N the number of variables

S the size of the hash table which is a power of two

an array E containing the exponents for the new monomial

Shared : an array T where T[k] is the hash for the value T[S+k]

h := hash(E);

retry: k := h;

for i from 0 to S-1 do

k := (k+i) mod S-1;

if (T[k] = 0) break;

if (T[k] != h) continue;

m := T[S+k];

V := exponent_vector(m);

for i from 0 to N-1 do

if (V[i] != E[i]) break;

if (i = N) return m;

if (compare_and_swap(&table_lock,0,1)) goto retry;

for i from 0 to S-1 do # search table again

k := (k+i) mod S-1;

if (T[k] = 0) break;

if (T[k] != h) continue;

m := T[S+k];

V := exponent_vector(m);

for i from 0 to N-1 do

if (V[i] != E[i]) break;

if (i = N) goto done;

m := monomial_count++;

V := exponent_vector(m);

for j from 0 to N-1 do V[j] := E[j];

Column(m) := 0; T[s+k] := m;

compare_and_swap(&T[k],0,h);

done: table_lock := 0;

return m;

6

6 Benchmarks

Benchmarking software is becoming more difficult these days with variable clock speeds, heterogeneous cores,
and simultaneous multithreading. Our first benchmark was run with 32-bit code on a Raspberry PI 4B with
8 GB of RAM, which has none of those features. We used /usr/bin/time -v for measurements.

cyclic-9 mod p = 231 − 1 sequential 1 thread 2 threads 4 threads
real seconds 595.69 594.11 327.13 199.23
cpu seconds 593.49 591.32 617.49 681.05

cpu utilization 99% 99% 189% 343%
max memory (KB) 176060 181220 214048 238180

parallel speedup – 1.003x 1.821x 2.990x

This benchmark shows that our parallel code nearly matches the efficiency of the sequential code when
one thread is used. For two threads the result is also good, but for four threads we can see the code can not
fully utilize the cpu and there is a substantial increase in cpu time as well. Part of the inefficiency is due to
Amdahl’s Law, where some steps in the algorithm are too short to parallelize effectively. But it looks like
four threads are exhausting the resources of the Broadcom BCM2711 CPU. This CPU has 1 MB of shared
L2 cache for the cores to communicate, and that bottleneck might account for the increase in CPU time.

Our remaining benchmarks use a more powerful computer, a Ryzen 9955HX with 16 cores, simultaneous
multithreading which we disabled in the Linux kernel, and 64 MB of shared L3 cache. The maximum clock
speed is 5.4 GHz. The computer has 96GB of DDR5 (5600) RAM and a Gen5 7000MB/s NVMe swap drive.

We selected three problems to stress different apsects of the F4 algorithm: cyclic-9 is a generic problem
with degree drops, katsura-12 emphasizes linear algebra, and noon-9 emphasizes symbolic preprocessing. We
ran problems with a 31-bit prime 231 − 1 and a 63-bit prime 263 − 25. The software is compiled for 64-bit
in both cases, but uses more efficient linear algebra code for smaller primes.

cyclic-9 31-bit p sequential 1 thread 2 threads 4 threads 8 threads 16 threads
real seconds 53.61 60.04 32.80 20.29 12.83 8.75
cpu seconds 53.47 59.16 59.08 62.52 63.88 71.26

cpu utilization 99% 99% 180% 309% 503% 831%
max memory (KB) 294996 323092 378364 457904 560176 757740

parallel speedup – 0.893x 1.634x 2.642x 4.178x 6.127x

cyclic-9 63-bit p sequential 1 thread 2 threads 4 threads 8 threads 16 threads
real seconds 82.00 89.62 47.72 28.04 16.87 11.11
cpu seconds 81.87 88.75 88.80 92.54 93.71 104.33

cpu utilization 99% 99% 186% 331% 559% 951%
max memory (KB) 294720 323988 374512 455096 525656 590416

parallel speedup – 0.915x 1.718x 2.924x 4.861x 7.381x

katsura-12 31-bit p sequential 1 thread 2 threads 4 threads 8 threads 16 threads
real seconds 27.62 27.34 16.11 9.70 6.49 4.21
cpu seconds 27.49 26.92 29.39 30.73 32.13 35.32

cpu utilization 99% 99% 184% 321% 515% 883%
max memory (KB) 177452 225116 253456 276624 320304 383028

parallel speedup – 1.010x 1.714x 2.847x 4.256x 6.561x

katsura-12 63-bit p sequential 1 thread 2 threads 4 threads 8 threads 16 threads
real seconds 36.50 38.49 21.46 12.32 7.70 5.07
cpu seconds 36.34 38.00 40.13 40.97 42.05 45.58

cpu utilization 99% 99% 188% 336% 558% 940%
max memory (KB) 176084 223356 256256 275544 299416 351156

parallel speedup – 0.948x 1.701x 2.963x 4.740x 7.199x

7

noon-9 31-bit p sequential 1 thread 2 threads 4 threads 8 threads 16 threads
real seconds 15.86 18.47 13.05 10.23 7.74 6.83
cpu seconds 15.76 18.14 19.80 22.08 25.68 36.91

cpu utilization 99% 99% 152% 217% 336% 547%
max memory (KB) 228212 238952 241432 254672 291360 355584

parallel speedup – 0.859x 1.215x 1.550x 2.049x 2.322x

noon-9 63-bit p sequential 1 thread 2 threads 4 threads 8 threads 16 threads
real seconds 15.90 18.57 13.51 10.44 7.59 6.85
cpu seconds 15.82 18.23 20.44 22.70 25.77 37.28

cpu utilization 99% 99% 152% 219% 343% 552%
max memory (KB) 229284 240852 241276 262148 300520 384504

parallel speedup – 0.856x 1.177x 1.523x 2.095x 2.321x

7 Conclusion

We have presented a parallel implementation of F4 modulo a prime that has reasonable speedup on most
problems which are dominated by linear algebra. We consider the parallel speedup obtained so far to be
“pretty good” because the Gröbner basis computations consist of many steps, some of which are too small
or quick to parallelize effectively.

As an aside, we were able to compute a Gröbner basis for cyclic-10 on the Ryzen 9955HX in under 12
minutes for p = 231 − 1, but cyclic-11 is proving to be much harder. We hope to report on this in due time.

References

[1] Becker and Weispfenning. Gröbner Bases. Springer (1993).

[2] Bruno Buchberger. An algorithm for finding the basis elements of the residue class ring of a zero dimen-
sional polynomial ideal. J. Symbolic Comp., 41(3-4):475–511, (2006). Translated from the 1965 German
original by Michael P. Abramson.

[3] S. Collart, M. Kalkbrenner, and D. Mall. Converting bases with the Gröbner walk. J. Symbolic Comp.
6, 209–217 (1997).

[4] Cox, Little, and O’Shea. Ideals, Varieties, and Algorithms. Springer (1996).

[5] Cox, Little, and O’Shea. Using Algebraic Geometry. Springer (2004).

[6] Jean-Charles Faugère. A New Efficient Algorithm for Computing Grobner Bases (F4). Journal of Pure
and Applied Algebra, 139 (1). (1999)

[7] J.C. Faugère; P. Gianni; D. Lazard; T. Mora. Efficient Computation of Zero-dimensional Gröbner Bases
by Change of Ordering. Journal of Symbolic Computation. 16 (4): 329–344. (1993)

[8] Rüdiger Gebauer, H. Michael Möller. On an Installation of Buchberger’s Algorithm. Journal of Symbolic
Computation, Vol 6 issue 2–3 (1988).

[9] M. Monagan. Maximal quotient rational reconstruction: An almost optimal algorithm for rational recon-
struction. Proceedings of ISSAC 2004. 243–249, (2004).

[10] Michael Monagan, Roman Pearce. A Compact Parallel Implementation of F4. Proceedings of PASCO
2015.

[11] P. S. Wang. A p-adic Algorithm for Univariate Partial Fractions. Proceedings of SYMSAC ’81, ACM
Press, pp 212-217, (1981).

8

